
LESSON 22 - STUDY GUIDE

Abstract. In this lesson we will start studying the problem of convergence in Lp(T) norm of the partial
sums of Fourier series. We will begin by seeing that it is equivalent to the uniform boundedness of the

operator norms of the partial sums. Then, introducing the important connection of Fourier series with

the theory of complex analysis on the unit disk, we will study the problem of determining holomorphic
and harmonic extensions in the interior of the disk, from given boundary values. We will finish by

introducing the conjugation operator and show that convergence of Fourier series in Lp(T) norm is

equivalent to conjugation being well defined in Lp(T).

1. Convergence in norm, harmonic functions on the unit disk and the conjugation
operator.

Study material: This lesson is a very expanded version of section 1 - Convergence in Norm from
chapter II - The Convergence of Fourier Series, corresponding to pgs. 46–49 in the second edition
[3] and pgs. 66–70 in the third edition [4] of Katznelson’s book. The middle presentation of the study
of holomorphic and harmonic functions on the unit disk in complex analysis, to motivate and introduce
the conjugation operator, is essentially my own and is not in Katznelson in this level of detail. My main
reference for this subject are the first chapters of the beautiful little book by Kenneth Hoffman [2] about
the theory of analytic and harmonic functions on the unit disk, so called Hardy spaces, which we will
keep getting back to in further lectures.

We will now start looking at the issue of the convergence of the partial sums of the Fourier series in
Lp(T) norm. Clearly, we already have some results in that direction. The most significant of which is the
convergence of Fourier series in the L2(T) norm, obtained in Lesson 16, as a consequence of the Hilbert
space structure in that case. In the opposite direction we have the L∞(T) situation where convergence in
norm of the partial sums of the Fourier series would correspond to uniform convergence and therefore the
limit would have to be continuous, which is not the case with arbitrary L∞(T) functions. The situation
does not improve if we restrict to C(T) because we have seen, in Lesson 19, the dramatic examples
of Fourier series of continuous functions that diverge pointwise in uncountable dense sets. So, while
convergence in norm holds in L2(T) it does not in L∞(T) and one cannot interpolate between a positive
and a negative result. We will now see that at the other end of the Lp(T) spaces, in L1(T), convergence
does not hold either.

We start with the following theorem.

Theorem 1.1. For every f ∈ Lp(T), 1 ≤ p < ∞, the partial sums SN [f ](t) =
∑N
n=−N f̂(n)eint of the

Fourier series converge to f in the Lp(T) norm, if and only if the partial sum operators SN : Lp(T) →
Lp(T) are uniformly bounded in N ∈ N, i.e. if there exists a constant C > 0 such that

(1.1) ‖SN [f ]‖Lp(T) ≤ C‖f‖Lp(T),

for all f ∈ Lp(T) and N ∈ N.
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2 LESSON 22

Proof. If the partial sums converge in norm, then for any f ∈ Lp(T) the sequence of partial sums is
bounded in Lp(T), for it is a convergent sequence. Therefore, there exists a constant Cf , depending on
f , such that

‖SN [f ]‖Lp(T) ≤ Cf .
But then, from the Banach-Steinhaus theorem of functional analysis, that we recalled in Lesson 19, this
implies that the family of continuous operators SN is uniformly bounded

‖SN‖Lp(T)→Lp(T) ≤ C,

for some C > 0 and all N ∈ N. An this is the same as (1.1).
In the opposite direction, if (1.1) holds, then for arbitrarily small ε one can pick a trigonometric

polynomial P such that ‖P − f‖Lp < ε/(C + 1) to do

‖SN [f ]− f‖Lp(T) ≤ ‖SN [f ]− p‖Lp(T) + ‖P − f‖Lp(T),

and taking N > degree(P ), we get P = SN [P ] from which

‖SN [f ]− f‖Lp(T) ≤ ‖SN [f ]− SN [P ]‖Lp(T) + ‖P − f‖Lp(T)

= ‖SN [f − P ]‖Lp(T) + ‖P − f‖Lp(T)

≤ C‖P − f‖Lp(T) + ‖P − f‖Lp(T) ≤ ε,

concluding the proof �

In L1(T), the operator norms of the partial sums are, quite unsurprisingly, the Lebesgue constants. In
fact

‖SN [f ]‖L1(T) = ‖DN ∗ f‖L1(T) ≤ ‖DN‖L1(T)‖f‖L1(T),

so that ‖SN‖L1(T)→L1(T) ≤ ‖DN‖L1(T). And, using any approximate identity as f , for example the Fejér
kernel, one gets

‖SN [Kj ]‖L1(T) = ‖DN ∗Kj‖L1(T) ≤ ‖SN‖L1(T)→L1(T),

because ‖Kj‖L1(T) = 1. But making j →∞ on the left hand side, we get ‖DN ∗Kj‖L1(T) → ‖DN‖L1(T)
and thus ‖DN‖L1(T) ≤ ‖SN‖L1(T)→L1(T) concluding finally that

‖DN‖L1(T) = ‖SN‖L1(T)→L1(T).

So, from the previous theorem, and the fact that the Lebesgue constants grow logarithmically in N we
obtain the following corollary.

Corollary 1.2. There exist functions f ∈ L1(T) for which their Fourier series do not converge in the
L1(T) norm.

So L1(T) is quite pathological, for we have examples of functions whose Fourier series do not converge
in norm as well as functions whose Fourier series diverge pointwise everywhere, as mentioned in Lesson
20. In terms of convergence of the partial sums of Fourier series things cannot be much worse than that.

To try to investigate what happens for the remaining Lp(T) spaces, 1 < p < ∞, it is not easy to
determine the operator norms of the partial sums. It turns out that convergence in norm can also be
related to the definition of a particular Fourier multiplier operator, which surprisingly arises from looking
at Fourier series as boundary values of harmonic functions on the unit complex disk.

Let us denote by D = {z ∈ C : |z| < 1} the unit disk in the complex plane, and D = {z ∈ C : |z| ≤ 1}
its closure. T can then be isomorphically identified with the the boundary of the disk ∂D = S1 through
t 7→ eit and functions on T identified this way with functions on ∂D = S1. We will denote their values
by either f(t) or the pullback f(eit), depending on the context, whether we are thinking of T or ∂D.
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Recalling now a bit of elementary complex analysis, and imagining that f : Ω ⊂ C→ C is a holomorphic
function on an open set Ω that contains D, we can expand f in Taylor series centered at the origin with
a radius of convergence strictly larger than one. So that, for |z| ≤ 1 we have

f(z) =

∞∑
n=0

f (n)(0)

n!
zn,

with the convergence holding absolutely and uniformly for all z ∈ D. If we write z = reit in polar
coordinates, then, for |z| = r ≤ 1 we have

f(z) = f(reit) =

∞∑
n=0

anr
neint,

where an = f(n)(0)
n! are the coefficients of the Taylor series. By changing the complex analysis point of

view just slightly, we can imagine that f(z) = f(reit) = fr(t) is a one-parameter family of functions of
the angle t ∈ T, where the parameter is the radius r ≤ 1. Therefore, not only at the boundary of the
disk itself, but also for every fixed radius, f(z) = fr(t) can always be interpreted as one of our usual
functions defined on the circle T. And due to the absolute and uniform convergence of the Taylor series,
we conclude that, at fixed r, the Taylor series actually yields the Fourier series of fr, where

f̂r(n) =

{
anr

n for n ≥ 0

0 for n < 0.

In particular, the Taylor series coefficients an = f(n)(0)
n! are the Fourier coefficients of f at the boundary

of the disk ∂D, at radius r = 1, for the nonnegative frequencies,

f(eit) = f1(t) =

∞∑
n=0

ane
int =

∞∑
n=0

f (n)(0)

n!
eint.

And this then implies that, for r < 1, fr can be interpreted as the result of a Fourier multiplier operator
applied to the boundary function f1, with multiplier coefficients rn, for n ≥ 0, and 0, for n < 0. Or,
equivalently, the convolution of f1(t) = f(eit) with the kernel

Cr(t) =

∞∑
n=0

rneint =
1

1− reit
,

so that, for r < 1,

f(z) = f(reit) = fr(t) = f1 ∗ Cr(t) =
1

2π

�
T
f1(s)Cr(t− s)ds(1.2)

=
1

2π

� π

−π
f1(s)

1

1− rei(t−s)
ds =

1

2πi

� π

−π
f(eis)

ieis

eis − reit
ds

=
1

2πi

�
|w|=1

f(w)

w − z
dw.

So we have concluded the Cauchy integral formula of complex analysis for the values of a holomorphic
function in D from its boundary values, by a Fourier analysis interpretation of the Taylor series at every
fixed radius, as a Fourier multiplier operator that corresponds to the convolution of the function at the
boundary r = 1 with the kernel Cr. Accordingly, this kernel is called the Cauchy kernel.
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Likewise, we can do a very analogous reasoning as above but now for harmonic functions. Recall that
a function f : Ω ⊂ R2 → C is said to be harmonic if it is twice continuously differentiable on the open
set Ω and satisfies Laplace’s equation there

∆f = 0⇔ ∂2f

∂x2
+
∂2f

∂y2
= 0,

which is equivalent to its real and imaginary parts f = u + iv being harmonic too. In particular, every
holomorphic function on an open set is harmonic, because it is an immediate consequence of the Cauchy-
Riemann equations {

∂u
∂x = ∂v

∂y
∂v
∂x = −∂u∂y ,

and the fact that holomorphic functions are infinitely differentiable, that we have, by differentiating the
Cauchy-Riemann equations,

∂2u

∂x2
+
∂2u

∂y2
= 0 and

∂2v

∂x2
+
∂2v

∂y2
= 0.

Now, recall the important converse result that, if a real function u : Ω ⊂ R2 → R is harmonic and the
domain Ω is simply connected, then there exists another real harmonic function v : Ω ⊂ R2 → R, unique
up to an additive constant, such that u+ iv is holomorphic on Ω. This function v is called the harmonic
conjugate of u.

So if, as before, Ω is open and contains D and we now start with u : Ω → R harmonic, then there
exists a harmonic conjugate v on an open set that contains D, unique if we demand that v(0) = 0. Then,
f = u+ iv is holomorphic on D so that it is given by a Taylor series centered at the origin

(1.3) f(z) =

∞∑
n=0

anz
n =

∞∑
n=0

anr
neint,

with f(0) = u(0) = a0 ∈ R, uniformly and absolutely convergent for |z| ≤ 1, and therefore

(1.4) u(z) = Re(f)(z) =
f(z) + f(z)

2
=

∑∞
n=0 anz

n +
∑∞
n=0 anz̄

n

2
,

while

(1.5) v(z) = Im(f)(z) =
f(z)− f(z)

2i
=

∑∞
n=0 anz

n −
∑∞
n=0 anz̄

n

2i
.

Expanding (1.4) in polar coordinates z = reit, to turn the Taylor series again into a Fourier series for
fixed radius r, we get

u(z) = u(reit) = ur(t) = a0 +

∞∑
n=1

an
2
rneint +

∞∑
n=1

an
2
rne−int

=

∞∑
n=−∞

cnr
|n|eint,

with

cn =


an/2 for n > 0,

a0 for n = 0,

a−n/2 for n < 0,

where these coefficients are now the Fourier coefficients of u at r = 1, û1(n) = cn for all n ∈ Z, which

satisfy the relation û1(n) = cn = c−n = û1(−n), in accordance with the fact that u1 is a real function.
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At this point, like we did above for holomorphic functions, we can now interpret the Fourier series
expansion of a harmonic function for r < 1, with Fourier coefficients given by ûr(n) = cnr

|n| for all n ∈ Z,
as the Fourier multiplier operator, with multipliers r|n|, acting on the function u1 on T, the boundary
value of u at ∂D. So that, in analogy with (1.2), for |z| = r < 1 we have

u(z) = u(reit) = ur(t) = u1 ∗ Pr(t) =
1

2π

�
T
u1(s)Pr(t− s)ds,

with Pr the convolution kernel associated to the Fourier multipliers r|n|,

Pr(t) =

∞∑
n=−∞

r|n|eint = 1 + 2

∞∑
n=1

rn cos(nt)(1.6)

= Re

(
1 + 2

∞∑
n=1

zn

)
= Re

(
1 + z

1− z

)
= Re

(
1 + reit

1− reit

)
=

1− r2

1− 2r cos t+ r2
.

And this is none other than the Poisson kernel that we have encountered before, associated to Abel’s
summability method. So, while for holomorphic functions on the closed disk, whose Fourier series only
have nonzero coefficients for nonnegative frequencies, their interior point values are given by the convolu-
tion of the boundary function with the Cauchy kernel, corresponding then to Cauchy’s integral formula
of complex analysis, for harmonic functions their Fourier series in general have nonzero coefficients for all
frequencies, and their interior point values are given by the convolution of the boundary function with
the Poisson kernel,

(1.7) u(z) = ur(t) = u1 ∗ Pr(t) =
1

2π

� π

−π
u1(s)

1− r2

1− 2r cos(t− s) + r2
ds.

This is the important Poisson integral formula, also frequently taught in complex analysis courses, for
obtaining harmonic functions on D from their boundary values on ∂D.

As a side observation, note that the Poisson integral formula clearly also holds for complex harmonic
functions, which happens, in particular, if the harmonic function is holomorphic. So we actually have
both convolution formulas,

f(z) = fr(t) = f1 ∗ Cr(t) = f1 ∗ Pr(t)

as equivalent methods for obtaining the values of a holomorphic function on D from its boundary values.
This is not surprising by looking at the Fourier series representation of these operators, as they both
have the same Fourier multipliers rn for n ≥ 0, and holomorphic functions have boundary values with

Fourier coefficients f̂1(n) = 0 for n < 0, as we saw before. So the Fourier multipliers for n < 0 really do
not matter in this case and any other Fourier multiplier operator with the same rn multipliers for n ≥ 0,
whatever its values were for n < 0, would do the same job of reconstructing the holomorphic function on
D from its values on ∂D.

Returning to the main idea that we are pursuing, we can also obtain in a similar fashion both the
holomorphic function f in (1.3) as well as the harmonic conjugate v in (1.5), from the boundary values u1

of the harmonic function u, by using appropriate kernels. Observing from (1.6) that Pr(t) = Re
(

1+z
1−z

)
=

Re
(

1+reit

1−reit

)
and that Re(f(z)) = u(z) = ur(t) = u1 ∗ Pr = u1 ∗ Re

(
1+z
1−z

)
, if we now denote by H(z) =
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Hr(t) the function given, for r < 1, by

H(z) = Hr(t) = 1 + 2

∞∑
n=1

zn = 1 + 2

∞∑
n=1

rneint

=
1 + z

1− z
=

1 + 2iIm(z)− |z|2

|1− z|2
=

1 + 2i Im(z)− |z|2

|1− z|2

=
1 + reit

1− reit
=

1 + 2i sin t− r2

1− 2r cos t+ r2

this analytic function is naturally called the holomorphic Poisson kernel and it allows us to obtain the
unique holomorphic f in the interior of the unit disk that has zero imaginary part at the origin, from the
values on ∂D of its real part, the harmonic function u, by the Fourier multiplier operator corresponding
to the Taylor series in (1.3)

f(z) = f(reit) = fr(t) = c0 + 2

∞∑
n=1

cnr
neint = û1(0) + 2

∞∑
n=1

û1(n)rneint,

with zero Fourier coefficients for the negative frequencies, that we now understand to be the case for
analytic functions. Or equivalently, by the convolution on the circle T,

f(z) = f(reit) = fr(t) = u1 ∗Hr(t) =
1

2π

�
T
u1(s)Hr(t− s)ds =

1

2π

� π

−π
u1(s)

1 + 2i sin(t− s)− r2

1− 2r cos(t− s) + r2
ds

=
1

2π

� π

−π
u1(s)

1 + rei(t−s)

1− rei(t−s)
ds =

1

2π

� π

−π
u1(s)

eis + reit

eis − reit
ds

=
1

2π

� π

−π
u(eis)

eis + z

eis − z
ds =

1

2πi

� π

−π
u(eis)

eis + z

eis − z
ieis

eis
ds

=
1

2πi

�
|w|=1

u(w)

w

w + z

w − z
dw.

Of course the difference between this formula and (1.2), corresponding to Cauchy’s integral formula,
or the convolution with the Cauchy kernel, is that here we obtain the values of the holomorphic function
f on D from the values at r = 1 of just its real part u, whereas there we obtained f from its own values
on the boundary.

Finally, we can still obtain the harmonic conjugate v also from the boundary values of u, this time by
the convolution with the conjugate Poisson kernel

Qr(t) = −i
∞∑

n=−∞
sgn(n)r|n|eint = Im

(
2

∞∑
n=1

zn

)
(1.8)

= Im

(
1 + z

1− z

)
= Im(Hr(t))

=
2 sin t

1− 2r cos t+ r2
,

where sgn(0) = 0 and sgn(n) = ±1 depending on whether n > 0 or n < 0. Therefore we can rewrite (1.5)
as the Fourier multiplier operator

v(z) = vr(t) = −i
∞∑

n=−∞
sgn(n)cnr

|n|eint = −i
∞∑

n=−∞
sgn(n)û1(n)r|n|eint
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or, equivalently, v can be obtained for r < 1 by the convolution on T,

(1.9) v(z) = vr(t) = u1 ∗Qr(t) =
1

2π

�
T
u1(s)Qr(t− s)ds =

1

2π

� π

−π
u1(s)

2 sin(t− s)
1− 2r cos(t− s) + r2

ds.

Obviously, both Pr(t) and Qr(t) are harmonic in the interior of the unit disk and Qr(t) is the harmonic
conjugate of Pr(t) because they are, respectively, the real and imaginary parts of the analytic kernel
H(z) = Hr(t) = 1+z

1−z .
One should be careful, nevertheless, that the formulas for the kernel functions are only valid for r < 1

as all these three Fourier multiplier operators degenerate into convolutions with distributions at the
boundary ∂D, when r = 1, that no longer are functions, and this is a crucial element of the theory. For
example, the Poisson integral, which for r < 1 is the Fourier multiplier operator u1 7→ ur = F−1(r|n|û1(n))
with multipliers r|n|, and therefore can be written as the convolution (1.7) with the well defined harmonic
function (1.6), when r = 1 the multipliers all become 1 and therefore the Poisson kernel degenerates at
the boundary ∂D of the disk into a Dirac-δ. Clearly this is consistent with the fact that the Poisson
kernel is an approximate identity and that, of course, we want to recover u1 at the boundary so that
the operator should be the identity there. Thus, at r = 1 we should definitely have u = u1 ∗ δ = u1.
On the other hand, for the conjugate function, given for r < 1 by the Fourier multiplier operator
u1 7→ vr = F−1(−i sgn(n)r|n|û1(n)) and also written as the convolution (1.9) with the well defined
harmonic function (1.8), when r = 1 one could be tempted to say that, because we have

lim
r→1

Qr(t) = lim
r→1

2 sin t

1− 2r cos t+ r2
=

sin t

1− cos t
=

1

tan t
2

then, in this case the Fourier multiplier operator u1 7→ v1 = F−1(−i sgn(n)û1(n)), yielding the boundary
values of the conjugate function, could actually be written as the convolution of functions

(1.10) v1(t) = u1 ∗
1

tan ( · )
2

(t) =
1

2π

� π

−π
u1(s)

1

tan (t−s)
2

ds.

However, a more careful examination of this kernel shows that, in the neighborhood of the origin
tan(t/2) ∼ t/2 and therefore the kernel for the conjugation operator at r = 1 would be given by the
convolution of u1 with the very singular 1/ tan(t/2) ∼ 2/t, which is not even Lebesgue integrable in any
neighborhood of the origin. It is not even obvious how to define it as a distribution, due to its singular
and nonintegrable behavior around the origin, although certainly the Fourier multipliers −i sgn(n) do
correspond with some convolution with a distribution kernel. So, in spite of its apparent simplicity, the
conjugation kernel is actually more complicated than the Poisson kernel and its Dirac-δ limit at the
boundary. In fact, this will be the key to obtaining the convergence of Fourier series in Lp norm, as we
will soon see, while the correct definition of the singular convolution integral (1.10) leads to the Hilbert
transform and to the modern theory of singular integral operators, around which the Calderon-Zygmund
school of harmonic analysis of the second-half of the twentieth century developed.

This whole analysis of holomorphic and harmonic functions on D intentionally started by assuming
that the functions were all defined on an open set Ω that contained D in order for everything to work
perfectly up to, and including, the boundary ∂D. In particular, from the value of the initial harmonic
function u at r = 1 and the absolute convergence of the Taylor series on D we guaranteed well defined and
absolutely convergent series for the harmonic conjugate v and the full holomorphic function f = u+ iv,
at r = 1, given by the Fourier multiplier operators

(1.11) u(eit) = u1(t) 7→ v1(t) = −i
∞∑

n=−∞
sgn(n)û1(n)eint
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and

(1.12) u(eit) = u1(t) 7→ f1(t) = u1(t) + iv1(t) = û1(0) + 2

∞∑
n=1

û1(n)eint,

even not knowing precisely how to define their convolution distribution kernels, which nevertheless we
are sure do exist, from our study of Fourier multiplier operators in the last lesson.

The problem becomes a lot more subtle if we just start with an arbitrary continuous function g ∈ C(T)
or even g ∈ Lp(T), even complex valued, and try to reproduce the same construction, assuming now that
this starting function is the desired boundary value u1 of our harmonic function u on D, from which we
wish to obtain its harmonic conjugate v and finally its boundary value v1 as well. We will no longer focus
on the holomorphic f because its existence and definition is equivalent to that of v, from which it can
simply be obtained by f = u+ iv.

So, the Poisson integral

u(z) = ur(t) = g ∗ Pr(t) =
1

2π

�
T
g(s)Pr(t− s)ds =

1

2π

� π

−π
g(s)

1− r2

1− 2r cos(t− s) + r2
ds,

is perfectly well defined for |z| = r < 1 and defines a harmonic function on D, because Pr(t) is harmonic
and one can easily see that ∆(g ∗ Pr) = g ∗ ∆Pr = 0 by writing the Laplacian in polar coordinates.
Besides, from the fact that we already know that the Poisson kernel is an approximate identity, or a
summability kernel, we have g ∗ Pr → g uniformly, i.e. in the supremum norm, as r → 1 when g ∈ C(T),
and in the Lp(T) norm, when g ∈ Lp(T), for 1 ≤ p < ∞. In this sense, the first part of the problem is
solved: we did find a harmonic function u on D whose boundary values, in the sense of these limits as
r → 1, is g. In the following lesson we will even see that this solution of the boundary value problem for
Laplace’s equation on the unit disk D is unique.

As for the harmonic conjugate v we certainly can be sure that

v(z) = vr(t) = g ∗Qr(t) =
1

2π

�
T
g(s)Qr(t− s)ds =

1

2π

� π

−π
g(s)

2 sin(t− s)
1− 2r cos(t− s) + r2

ds,

is also well defined for |z| = r < 1, is harmonic and is the only harmonic conjugate of the previous u that
vanishes at z = 0. It should be noted, though, that in the case that the initial function g is complex,
then u is complex and v is a complex harmonic conjugate of u in the sense that the real and imaginary
parts are correspondingly conjugate. The crucial problem rests, however, on the boundary values of v as
r → 1. It is not at all obvious whether that limit exists pointwise or in norm, and that will be the central
issue that we will focus on in the next few lessons: it is called the conjugation problem, and was one of
the central questions in complex and harmonic analysis at the beginning of the twentieth century.

To conclude this lesson, it will suffice for now to define the boundary value function of the harmonic
conjugate from a Fourier multiplier perspective. In further lessons we will deepen the study of this issue,
from different points of view. As we saw before, when assuming that all functions were well defined a
priori on D, the correspondence between the boundary value of u and the boundary value of its harmonic
conjugate is given by the Fourier multiplier operator (1.11). Se we have the following definition.

Definition 1.3. The Fourier multiplier operator f ∈ L1(T) 7→ f̃ ∈ D′(T) defined by

ˆ̃
f(n) = −i sgn(n)f̂(n),

is called the conjugation operator, and f̃ is called the conjugate of f . Also, a space Lp(T), 1 ≤ p ≤ ∞, is

said to admit conjugation if f̃ ∈ Lp(T) whenever f ∈ Lp(T).
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As an obvious example, L2(T) admits conjugation because, as the Fourier multipliers are {−i sgn(n)}n∈Z ∈
l∞(Z) and we know from Theorem 1.9 in the previous lesson that the L2(T) Fourier multipliers M2 co-

incide exactly with l∞(Z) then, if f ∈ L2(T) the conjugate function will also be f̃ ∈ L2(T). Besides

‖f̃‖L2(T) ≤ ‖f‖L2(T),

because we also know, from the same theorem, that the operator norm is equal to the l∞ norm of the
multipliers. Actually, from Plancherel’s identity, we can relate the two norms more precisely

‖f̃‖2L2(T) =

∞∑
−∞
| ˆ̃f(n)|2 =

∞∑
−∞
| − i sgn(n)f̂(n)|2 =

∞∑
−∞
|f̂(n)|2 − |f̂(0)|2 = ‖f‖2L2(T) − |f̂(0)|2.

Although the definition of an Lp(T) space admitting conjugation only demands that f̃ belong to the
same space as f , that is enough to guarantee boundedness of the operator as a consequence of the closed
graph theorem, in Functional Analysis (as usual, I recommend Folland’s book [1], chapter 5 - Elements
of Functional Analysis, if you need to review some of these fundamental theorems).

Proposition 1.4. If Lp(T) admits conjugation, then the conjugation operator is bounded on Lp(T).

Proof. Recall the closed graph theorem that, if X and Y are Banach spaces and a linear map T : X → Y
has a closed graph in the product space X × Y then the map is bounded ‖Tx‖Y ≤ C‖x‖X , for some
C ≥ 0 and all x ∈ X. So, using X = Y = Lp(T), to prove that the graph of the conjugation operator is

closed, let us assume that fj → f in Lp(T), and f̃j → g in Lp(T). We need only show that f̃ = g. But,

from the convergence of fj to f in Lp(T) we know that f̂j(n)→ f̂(n) uniformly in n ∈ Z as j →∞. And

thus
ˆ̃
fj(n) = −i sgn(n)f̂j(n) → −i sgn(n)f̂(n) uniformly in z ∈ Z too. On the other hand, as f̃j → g in

Lp(T) it must also be that
ˆ̃
fj(n)→ ĝ(n) uniformly in z ∈ Z. So necessarily

ĝ(n) = −i sgn(n)f̂(n), for all n ∈ Z,

which implies that g = f̃ . And this concludes the proof. �

A closely related operator, both to the conjugation operator as well as to the operator (1.12), that yields
the values at the boundary ∂D of the holomorphic function from the boundary values of its harmonic
real part, is the following.

Definition 1.5. The Fourier multiplier operator P : L1(T)→ D′(T) defined, for f ∈ L1(T), by

P̂ f(n) =

{
f̂(n) for n ≥ 0,

0 for n < 0,

is called the Riesz projection operator. In other words, the Riesz projection of f is the distribution with

Fourier series
∑∞
n=0 f̂(n)eint. Also, just like for conjugation, a space Lp(T), 1 ≤ p ≤ ∞, is said to admit

projection if Pf ∈ Lp(T) whenever f ∈ Lp(T).

We then have.

Proposition 1.6. The Lebesgue space Lp(T), with 1 ≤ p ≤ ∞, admits conjugation if and only if it
admits projection.

Proof. The proof is simple and just consists in observing that the Fourier series of Pf can be written in
terms of f and f̃ , and vice-versa.

So if Lp(T) admits conjugation then, for f ∈ Lp(T) we have f̃ ∈ Lp(T) as well. And therefore 1
2 f̂(0) +

1
2 (f + if̃) is also in Lp(T). But this is the Riesz projection of f for its Fourier series is

∑∞
n=0 f̂(n)eint.
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Conversely, if Lp(T) admits projection, then Pf ∈ Lp(T). And we just need to note that in that case

the conjugate f̃ can now be written as f̃ = −i(2Pf−f− f̂(0)) which necessarily will also be in Lp(T). �

To conclude this lesson we now present the fundamental theorem that relates the conjugation problem
with convergence of Fourier series in Lp(T) norm.

Theorem 1.7. Fourier series converge in Lp(T) norm for every f ∈ Lp(T) if and only if Lp(T ) admits
conjugation.

Proof. We will combine Theorem 1.1 with the previous proposition to show that Lp(T) admits projection
if and only if the norms of the Fourier partial sum operators are uniformly bounded. The main idea is
to notice that partial sums of the projection operator are partial sums of the Fourier series shifted in
frequency. And shifts in frequency of the whole Fourier series consist of just multiplication by appropriate
oscillating exponentials, which do not affect the operator norms. So, essentially, the Fourier partial sum
operator norms are uniformly bounded if and only if the correspondingly shifted partial sum operator
norms of the projection are also uniformly bounded, and this is equivalent to both converging in Lp(T).

Let us assume first that there exists C ≥ 0 such that ‖SN‖Lp(T)→Lp(T) ≤ C, for all N . Then, the 2N
partial sums of the projection can be written as

(1.13) SP2N [f ] =

2N∑
n=0

f̂(n)eint = eintSN [e−intf ],

and because of the uniform boundedness of the partial sum operators of the Fourier series of f , this also im-
plies now the uniform boundedness of the partial sum operators of the Riesz projection ‖SP2N‖Lp(T)→Lp(T) ≤
C. Following then the same idea as in Theorem 1.1 for the partial sums of the Fourier series, we can show
here too that SP2Nf converges in Lp(T) as a consequence of this uniform boundedness of the partial
sum operator norms. In fact, given any ε > 0 we can pick a trigonometric polynomial R for which
‖f −R‖Lp(T) < ε/2C and we then have

‖SP2N [f ]− SP2N [R]‖Lp(T) = ‖SP2N [f −R]‖Lp(T) ≤ C
ε

2C
=
ε

2
.

Observe now that, because the Projection operator truncates the negative frequencies, its partial sums
will never equal an arbitrary trigonometric polynomial, unlike the partial sums of the Fourier series for
large enough order. But, in any case, for N,M > degreeR/2 then SP2N [R] = SP2M [R] and

‖SP2N [f ]− SP2M [f ]‖Lp(T)

≤ ‖SP2N [f ]− SP2N [R]‖Lp(T) + ‖SP2N [R]− SP2M [R]‖Lp(T) + ‖SP2M [f ]− SP2M [R]‖Lp(T)

= ‖SP2N [f ]− SP2N [R]‖Lp(T) + ‖SP2M [f ]− SP2M [R]‖Lp(T) < ε.

And this we conclude that the partial sums of the Projection operator are Cauchy and therefore con-
verge in Lp(T). Its limit necessarily corresponds is the full Projection operator with Fourier series∑∞
n=0 f̂(n)eint.
Now, let us assume conversely that Lp(T) admits projection. Then f 7→ Pf is a linear bounded

operator in Lp(T). And we can write its partial sums of order 2N as

SP2N [f ] =

2N∑
n=0

f̂(n)eint = Pf − ei(2N+1)tP (e−i(2N+1)tf),

so that

‖SP2N‖Lp(T)→Lp(T) ≤ 2‖P‖Lp(T)→Lp(T),
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where ‖P‖Lp(T)→Lp(T) here denotes the projection operator norm. The projection partial sum operators
are thus uniformly bounded and from (1.13) we conclude that the Fourier partial sum operators are also
uniformly bounded, concluding the proof. �

From the examples that we have seen, we could now have concluded that Fourier series converge in
L2(T) because we know L2(T) admits conjugation.

On the other hand, as we have shown at the beginning of this lesson, after Theorem 1.1, that there are
L1(T) functions whose Fourier series do not converge, we can now conclude that L1(T) does not admit

conjugation. So there must be functions f ∈ L1(T) whose conjugate f̃ 6∈ L1(T). As a matter of fact, we
did see in Lesson 17 the example of the trigonometric series

∞∑
n=2

cosnt

log n
=
∑
|n|≥2

eint

2 log |n|
,

which is a Fourier series of a function in L1(T), but such that
∞∑
n=2

sinnt

log n
= −i

∑
|n|≥2

sgn(n)
eint

2 log |n|

is not. And the latter is precisely the conjugate function of the former, and although it does converge
everywhere t ∈ T, we showed then that it is not a Fourier series.
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